Чужие вокруг нас

Где и как искать инопланетян? Идея внеземной жизни завораживала человечество задолго до начала освоения космического пространства. Джон Уиллис, астроном и популяризатор науки, приводит пять наиболее реалистичных сценариев поиска инопланетных живых существ в нашей Галактике. Описывая последние достижения в изучении космоса — результаты космического телескопа «Кеплер», исследование Марса с помощью марсохода «Кьюриосити», пролет около Плутона зонда «Новые горизонты» и многие другие, — Уиллис предоставляет читателям возможность самим выбрать подходящий способ обнаружения внеземной жизни. Он предлагает нам поразмышлять о ее существовании под марсианским льдом, на спутнике Юпитера Европе и спутниках Сатурна Энцеладе и Титане, причем нынешние условия на Титане автор рассматривает через призму далекого прошлого нашей собственной планеты. Уиллис бросает взгляд и за пределы Солнечной системы, обсуждая шансы найти «вторую Землю» среди миллиардов экзопланет, вероятно, существующих в нашей Галактике, а также вслушивается в далекий космос в надежде услышать инопланетные радиосигналы.

Представляем вашему вниманию главу из книги Джона Уиллиса «Все эти миры — ваши: Научные поиски внеземной жизни».

Купить полную книгу

Чужие вокруг нас

Существуют ли инопланетяне? Есть ли жизнь за пределами нашей планеты? Думаю, да. И скорее всего, населенных миров великое множество. Откуда у меня такая уверенность? Почему я в этом убежден настолько, что даже решился написать целую книгу для ответа на этот вопрос? Моя уверенность в значительной степени основана на математических выкладках. Вселенная, как мы знаем, огромна, возможно даже бесконечна. Не надо быть знатоком математики, чтобы понять, что бесконечность — это очень много. Настолько много, что, даже если вероятность какого-то события, например возникновение жизни, ничтожно мала, все равно оно когда-нибудь произойдет. Пусть шанс, что выигрыш выпадет на задуманное вами число, мал, но все-таки он не равен нулю, и если вам позволено ставить на него бесконечное количество раз, то рано или поздно вам обязательно повезет. В бесконечной Вселенной возможно все. Однако такая логика в каком-то смысле обескураживает: в соответствии с подобными рассуждениями внеземная жизнь разбросана всюду, даже по самым удаленным уголкам мироздания. Гораздо интереснее размышлять о том, где можно найти инопланетную жизнь, какие формы она принимает, какой у нее обмен веществ и как мы могли бы с ней взаимодействовать. Но, как мы увидим в последующих главах, найти ответы на эти вопросы гораздо трудней, чем уверенно заявить о существовании иной жизни в космосе.

А что, если немного изменить вопрос? Есть ли у нас какие-либо научные доказательства существования жизни во Вселенной за пределами Земли? В настоящий момент ответ на этот вопрос, несомненно, будет отрицательным. Возможно, это объясняется тем, что никакой другой жизни, кроме земной, в космосе действительно не существует. Однако, если вспомнить, что говорилось выше, жизнь во Вселенной определенно есть, просто пока нам не удалось ее обнаружить. Мы недостаточно вглядывались и вслушивались в дальний космос, чтобы различить в нем признаки жизни. Более того, вполне возможно, что у нас уже имеются научные свидетельства существования внеземной жизни, только до сих пор они не признаны в качестве неопровержимых доказательств — мы еще затронем эту тему.

Даже когда вы дочитаете эту книгу, ответ на мой второй вопрос по-прежнему останется отрицательным. В значительной степени это объясняется тем, что при тех возможностях, которыми мы сегодня располагаем, наша задача остается чрезвычайно сложной. Несмотря на утверждения энтузиастов, занимающихся НЛО, внеземная жизнь не возникнет внезапно у нас на пороге. В настоящее время внеземная жизнь находится за пределами досягаемости телескопов и космических зондов. Поскольку наши научные ресурсы ограниченны, чтобы повысить шансы на успех, необходимо заранее определить, где и как следует искать. В этом может помочь астробиология. Эта наука ставит перед собой три основные цели: определить, какие условия необходимы для существования жизни на Земле (и, возможно, для существования жизни в принципе), найти во Вселенной места, которые соответствуют этим условиям, и, наконец, обнаружить в этих местах присутствие жизни. В настоящее время нам известно множество вероятных пристанищ для жизни: это планеты и спутники планет в нашей Солнечной системе, а также планеты, вращающиеся вокруг удаленных звезд. Некоторые из этих новых миров воспроизводят условия, встречающиеся на Земле — единственном месте, про которое нам точно известно, что жизнь здесь существует.

На этом месте въедливый читатель, возможно, возмутится: с какой стати мы рассматриваем жизнь на Земле в качестве шаблона для поиска жизни в других мирах? А что, если земная жизнь — лишь малая часть из огромного набора вариантов жизни вне Земли? Не слишком ли мы сужаем область наших поисков? Не получится ли так, что мы пройдем мимо чуждой формы жизни просто потому, что не сможем ее распознать? На этот вопрос также придется ответить утвердительно. Взяв за основу жизнь на Земле и последовательно расширяя круг поисков, мы действительно рискуем пропустить какие-то неизвестные нам формы жизни. Вполне вероятно, что из поля нашего внимания выпадут свободно перемещающиеся в космическом пространстве разумные существа, внешне похожие на астероиды, и другие невообразимые организмы. Но ведь надо с чего-то начинать! Единственная известная нам форма жизни — земная. Отталкиваясь от имеющихся у нас знаний, мы сможем рассуждать о том, какие процессы жизнедеятельности могут протекать на планетах, схожих с Землей. Под этими планетами я подразумеваю тела, имеющие твердую поверхность, атмосферу того или иного рода и, вероятно, наличие тех или иных химических соединений в жидкой форме. Единственное, за что я могу поручиться, — так это за то, что чем больше мы будем искать, тем больше мы будем узнавать о жизни и ее возможностях. Ну что, возражения снимаются? Тогда продолжим.

И вот наступает момент, когда мы вынуждены задаться вопросом: предполагается ли наличие жизни в каких-то конкретных участках Вселенной? И этот вопрос неизбежно влечет за собой следующий: какие физические эксперименты могут дать полную уверенность в существовании незнакомой нам формы жизни? Какие нужны технологии, чтобы провести эти исследования? Нужно ли нам встречаться с внеземными организмами «лицом к лицу» или мы можем получить сведения о них с помощью дистанционных методов? Вопросы, вопросы, вопросы. Для ответов на них нам придется прибегнуть к таким увлекательным научным дисциплинам, как астрономия, физика, химия, биология, геология, математика, компьютерное моделирование, философия, и это только начало. Хотя диапазон научных понятий, с которыми работают астробиологи, очень широк, идеи, которые они выдвигают, вполне доступны для понимания. Эти идеи нельзя назвать примитивными, но осмыслить их может любой, кто обладает начальными научными познаниями. Так что с учетом всего сказанного я бы хотел начать с очень простой и в то же время очень старой идеи — идеи обитаемых и необитаемых миров.

Новые миры на старый лад

Наш мир — это какое-то определенное место. Мы можем его ощущать, исследовать и каким-то образом на него воздействовать. Это реальный мир, а не абстрактная идея. Большую часть человеческой истории Земля была для людей единственным миром, и нам ничего не оставалось, кроме как исследовать его, открывая новые формы жизни. Астрономы древности считали звезды и планеты, видимые на ночном небосклоне невооруженным глазом, достойным предметом для изучения. Однако для них это были всего лишь яркие светящиеся точки. Чтобы понять природу этих объектов, люди прибегали к абстрактным рассуждениям и всяческим фантазиям, но выдвинутые ими идеи оставались ничем не подтвержденными, умозрительными заключениями. Все изменилось, когда появилась возможность взглянуть на эти объекты поближе. Чем больше мы видели, тем больше понимали, что каждая планета и каждая звезда — материальный мир, управляемый теми же физическими процессами, которые сформировали Землю и наше Солнце. А значит, мы можем исследовать и изучать эти миры. Мы можем посетить их, пройтись по их поверхности и даже вступить в контакт с их обитателями.

Галилео Галилей — человек, который первым дал нам возможность их увидеть. В 1609 г. Галилей попытался убедить венецианских купцов, что созданный им инструмент, состоящий из двух линз, установленных на разных концах деревянной трубки, позволяет разглядеть суда на дальнем расстоянии. Хотя мы с вами, вероятно, назвали бы этот прибор телескопом, сам Галилей использовал для него латинский термин perspicillum. Со своего наблюдательного пункта на колокольне собора Святого Марка Галилей мог разглядеть суда, которым оставался еще день пути до прибытия в венецианский порт. Увеличение, которое давал его телескоп, позволяло опознать каждое приближающееся судно по его флагам и вымпелам. Галилей предлагал судовладельцам покупать у него эту информацию и таким образом получать день форы перед своими конкурентами. Неизвестно, насколько успешным был этот бизнес и удалось ли ему убедить венецианских купцов раскошелиться, но в какой-то момент Галилей решил сменить область деятельности и направить свою трубу в совершенно другом направлении — на объекты ночного неба, такие как Луна, Сатурн и Юпитер. Увиденное в телескоп он просто и без затей описал в своем сочинении «Звездный вестник» (Sidereus Nuncius), вышедшем в 1610 г. и затронувшем буквально каждого.

Оказалось, что Луна — это целый мир с кратерами, высокими зубчатыми скалами и спрятанными в глубокой тени долинами. Ученые XVII в. предположили, что совершенно ровные, гладкие низины — это моря, и мы до сих пор используем этот термин. Примечательно, что все сведения о нашем спутнике Галилей получил из непосредственных наблюдений в телескоп. До этого момента о Луне не было известно почти ничего, кроме того что она вращается вокруг Земли. В классической астрономии Луна представлялась совершенным созданием, как и подобает обитателю небесной сферы. А вместо этого она, почти так же как и Земля, оказалась вся изборождена глубокими отметинами — следами древних катастроф. Но именно в этом несовершенстве Луны и запутанности ее истории и заключался главный интерес для ученых.

Всего 360 лет потребовалось человечеству, чтобы проделать путь от первых наблюдений Галилея до прибытия на место и взятия образцов грунта, а также (что оказалось особенно важно для нашего изучения Вселенной) доставке их на Землю. Наши многочисленные пилотируемые и автоматические миссии позволили нам узнать, что Луна состоит из пород, весьма сходных по составу с теми, из которых состоит земная кора. Насколько мы можем судить, самые древние лунные породы имеют тот же возраст, что и древнейшие породы Земли (не менее 4,4 млрд лет). Это лишь немногим меньше, чем метеориты, которые считаются старейшими обломками пород в Солнечной системе (4,54 млрд лет). Эти наблюдения позволяют сделать вывод, что в самом начале своей истории Земля и Луна были единым куском расплавленного вещества, а затем некое событие (вероятно, столкновение с другим планетоидом в молодой Солнечной системе) раскололо Землю на части, большая из которых стала Землей, а меньшая — Луной.

За те 360 лет, что разделяют Галилея и Нила Армстронга, Луна прошла путь от привычного, однако непонятного странника на нашем небосклоне до твердого тела с длинной геологической историей, неразрывно связанной с историей Земли. Задолго до того, как человек ступил на Луну, она стала для нас планетой — физической частью нашего мира. Далекая, но тем не менее осязаемая и реальная.

Шанс, что Марс обитаем…

Один против миллиона. Так утверждал астроном Оджилви в книге Герберта Уэллса «Война миров». Опубликованный в 1896 г. роман был предназначен для публики, которая считала, что Марс станет следующей после Земли планетой в нашем познании Вселенной. Человеком, который, как никто другой, способствовал тому, что общество было готово поверить в существование внеземной цивилизации на Марсе, был Персиваль Лоуэлл. Его история важна для поиска жизни во Вселенной, хотя, как мы еще увидим, утверждения Лоуэлла служат для нас хорошим напоминанием о том, на каком конце телескопа эта жизнь расположена.

Фигура Персиваля Лоуэлла не укладывается в рамки короткой биографической справки. Хотя его идеи относительно существования жизни на Марсе были ошибочны, Лоуэлла все-таки следует признать серьезным исследователем. Как астроном-любитель он положил начало традиции, когда богатые люди, имеющие финансовые возможности, становились главными донорами научных исследований в интересующей их области. Его решение расположить свою обсерваторию, оснащенную целым набором телескопов, в пустынной местности в Аризоне, а не где-нибудь поближе к благам цивилизации предвосхитило современную эпоху профессиональных ученых, когда телескопы устанавливают в отдаленных районах, что позволяет добиться наиболее высокого качества астрономических наблюдений.

Интерес к Марсу возник у Лоуэлла после ознакомления с работами директора миланской обсерватории Джованни Скиапарелли. Скиапарелли наблюдал Марс во время «великого противостояния» в 1877 г. Противостояние наступает, когда Земля и, например, Марс выстраиваются на одной линии по одну сторону от Солнца. Во время противостояния два небесных тела часто оказываются максимально близко друг от друга, и в этот момент складываются наилучшие условия для наблюдения планет.

Если наблюдать Марс в телескоп-рефрактор с такой же апертурой, как у инструментов, которые использовали Скиапарелли и Лоуэлл, планета выглядит бледным розовым диском с несколькими темными пятнами, отчетливо различимыми на его поверхности в районе вулканического нагорья Фарсида.

В зависимости от времени года на Марсе можно видеть яркую белизну ледяных полярных шапок, которые испаряются и отступают с наступлением летнего периода. Кроме того, на Марсе периодически случаются пылевые бури такой силы, что они полностью скрывают поверхность планеты, и она выглядит, как мутный диск. Скиапарелли утверждал, что во время своих наблюдений он обнаружил на поверхности Марса длинные темные линии, которые он назвал итальянским словом canali (протоки). Скиапарелли отмечал, что эти линии он мог увидеть в окуляре телескопа лишь в моменты полного атмосферного покоя, когда наблюдениям не мешает движение воздуха земной атмосферы и поверхность Марса перестает быть дрожащей и расплывчатой.

До этого момента все было вполне наукообразно. Скиапарелли честно описал то, что увидел в телескоп. Хоть он и рассуждал о возможной природе этих каналов, но делал это очень взвешенно и осторожно. Тем не менее наблюдения Скиапарелли стали отправным пунктом, от которого Лоуэлл совершил свой роковой переход от фактов к домыслам. Он заявил, что каналы, которые видел Скиапарелли, — реально существующие на поверхности Марса объекты и что они образуют глобальную сеть. Такая сеть прямых линий не могла возникнуть естественным путем, и, по его словам, это явно свидетельствует о существовании на Марсе развитой цивилизации.

Лоуэлл развил работы Скиапарелли, сделав подробные зарисовки марсианской поверхности, пересеченной сетью каналов. Неприятность заключалась в том, что другие астрономы, проводившие независимые исследования поверхности Марса, не могли подтвердить утверждения Лоуэлла. На это он отвечал, что только самые мощные телескопы, установленные в наиболее благоприятных для астрономических наблюдений местах (под этим он подразумевал свою обсерваторию), способны разглядеть такие детали.

Эти смелые, ни на чем не основанные допущения Лоуэлла даже сегодня выглядят впечатляюще. С какой стати марсианской цивилизации затевать строительство столь масштабной сети инженерных сооружений? С учетом того, что, даже если смотреть с поверхности Марса на Землю в современный мощный телескоп, почти невозможно разглядеть на Земле какие-либо следы человеческой цивилизации (если не считать ночной свет городов). По мнению Лоуэлла, лишь жизненная необходимость могла заставить марсиан осуществить строительство такого масштаба. Исходя из того что красный цвет поверхности Марса — признак сухой, пыльной, умирающей планеты, он предположил, что каналы — это акведуки, по которым живительная влага доставляется от ледяных шапок на полюсах к центру марсианской цивилизации на экваторе.

И вот тут от научного подхода уже совсем ничего не осталось. У Лоуэлла не было никаких данных, подтверждающих его гипотезу, кроме расплывчатых темных линий на поверхности Марса, привидевшихся ему в те моменты, когда, как он полагал, земная атмосфера была неподвижна. Что изменилось за эти годы? Усовершенствовались телескопы. Увеличилась их апертура и разрешающая способность. Игра света и тени на марсианской поверхности и размывающий эффект земной атмосферы породили иллюзию геометрической сетки. С появлением более мощных телескопов, позволявших яснее рассмотреть поверхность планеты, марсианские каналы растаяли как сон. И фантастические идеи Лоуэлла о существовании марсианской цивилизации поблекли и умерли вместе с ним в 1916 г.

Но любовь Лоуэлла к астрономии, а также обсерватория, которая носит его имя, оставили свой след. В 1930 г. Клайд Томбо, который работал в лаборатории Лоуэлла, заметил на фотографиях внешней области Солнечной системы маленькое светлое пятнышко, движущееся по орбите вокруг Солнца. Это пятнышко оказалось Плутоном, который долгое время считался (и до сих пор для многих остается) девятой планетой Солнечной системы.

Миллиарды и миллиарды планет?

Существуют ли другие планеты за пределами Солнечной системы? Взгляните в ночное небо невооруженным глазом, и вы увидите около 3000 звезд. Еще 3000 останутся под вами, над другим полушарием Земли. Все эти звезды находятся в галактике Млечный Путь — нашей Галактике. С помощью телескопа можно разглядеть еще больше звезд, которые светят не так ярко. Хотя точно посчитать количество всех звезд в галактике Млечный Путь невозможно (они собраны в скопления, в которых их трудно отделить одну от другой), можно определить общее количество света, испускаемое всеми звездами, и поделить эту величину на величину излучения среднестатистической звезды. Такие подсчеты дают цифру в 400 млрд звезд в нашей Галактике. Каждая звезда очень похожа на наше Солнце. Одни из них ближе к нам, другие дальше. Одни горячее и ярче Солнца, другие, наоборот, холоднее и тусклее. Каждая звезда — это светящийся шар, состоящий из ионизированного газа, в недрах которого происходят реакции термоядерного синтеза. В этом смысле все звезды имеют одинаковую природу.

Вокруг нашего Солнца образована система планет. Есть ли у других звезд Млечного Пути свои планетные системы? Многие астрономы, начиная еще с классических времен, ожидали, что рано или поздно будут обнаружены планеты, вращающиеся вокруг других звезд. По-видимому, в устройстве Солнечной системы, сформированной из пыли и газов, оставшихся после образования звезды, нет ничего необычного. Более того, и у нашего Солнца нет каких-то исключительных особенностей — в нашей Галактике есть множество звезд, подобных ему по массе и по составу.

Однако ожидания — это еще не открытие. Только в 1995 г. астрономы подтвердили существование первой планеты на орбите «обычной» звезды (звезды главной последовательности). Метод, которым они воспользовались, был прост и элегантен: хотя свет от планеты теряется в блеске родительской звезды, значительно превосходящей ее по яркости, вращаясь вокруг звезды, планета заставляет ее немного смещаться под воздействием гравитации. Планета и звезда подобны паре танцоров — большому и маленькому: планета кружится в вальсе вокруг своего звездного партнера, а тот в свою очередь чуть пододвигается ей навстречу, вращаясь по гораздо меньшей орбите. Метод, который позволяет обнаружить такие планеты, известен как спектрометрическое измерение лучевой скорости звезд, или метод Доплера: с Земли можно заметить, как звезда то приближается, то отдаляется под воздействием невидимой планеты.

Планета, обнаруженная в 1995 г., носит название 51 Пегаса b. Ее родительская звезда — 51 Пегаса, а — солнцеподобная звезда в созвездии Пегаса — находится на расстоянии 50,1 светового года от Солнца. Планета 51 Пегаса b обращается вокруг материнской звезды за 4,2 суток и придает ей доплеровскую скорость 56 м/с. Для сравнения: в Солнечной системе Юпитер придает Солнцу доплеровскую скорость 12 м/с и обращается вокруг него за 12 лет.

Образовался идеальный логический круг: ученые применили к планетной системе 51 Пегаса те же самые математические законы, которые Иоганн Кеплер — современник Галилея — использовал для описания движения планет Солнечной системы, однако результат получился совершенно неожиданный, чтобы не сказать больше. Оказалось, что 51 Пегаса b принадлежит к новому классу планет, которые мы теперь называем «горячими юпитерами». Масса 51 Пегаса b равна примерно половине массы Юпитера (или чуть больше половины), но ее короткий орбитальный период подразумевает, что расстояние от нее до материнского светила в 20 раз меньше расстояния от Земли до Солнца. Поскольку 51 Пегаса — солнцеподобная звезда, поверхность планеты (или, скорее, верхние слои ее атмосферы) разогреты до температуры 1200 К.

Для нашей истории важно, что в 1995 г. мы впервые обнаружили внесолнечную планету. Хотя мы можем наблюдать лишь косвенные признаки ее существования, это дает нам основания утверждать, что у 51 Пегаса имеется планета и она совершенно не похожа ни на одну из тех планет, с которыми мы сталкивались до сих пор. Метод Доплера позволяет нам рассчитать массу невидимой планеты и расстояние, на котором она вращается вокруг своей материнской звезды. Кроме того, наши наблюдения материнской звезды дают нам возможность определить, насколько сильно разогрета поверхность планеты. Для сравнения можно сказать, что сегодня мы знаем о любой внесолнечной планете почти столько же, сколько знали о внешних планетах нашей Солнечной системы до начала освоения космоса. Каждая из них — это целый мир. Мы можем измерить его физические характеристики. Мы можем оценить, в какой степени он может быть пригоден для жизни. Мы уже очень близки к тому моменту, когда сможем начать поиски признаков жизни в этих внесолнечных мирах.

К 2014 г. было обнаружено свыше 1800 планет, вращающихся вокруг своих звезд: одни из них одиночные, другие входят в планетные системы. Это число отражает те системы, существование которых можно считать подтвержденным, как правило, с помощью метода спектрометрического измерения лучевой скорости звезд. Несколько тысяч других, в частности те, которые были обнаружены космическим телескопом «Кеплер», с которым мы познакомимся в главе 8, пока считаются «кандидатами» в планеты, ожидающими подтверждения. На этом месте внимательный читатель может заметить, что данный раздел озаглавлен «Миллиарды и миллиарды планет». Как перейти от 1800 планет к миллиардам? Не все звезды Галактики были обследованы на наличие планет, но из тех, что были исследованы, планетными системами обладает значительный процент. В астрономии принято обозначать долю звезд определенного типа, имеющих свои планетные системы, как fp. Как выяснилось, для обычных звезд или, как их еще называют, звезд главной последовательности, которые составляют большинство звезд Млечного Пути, fp находится в пределах от 0,1 до 1 (1 означает, что каждая такая звезда имеет планеты).

Подождите: но ведь это потрясающе! Астрономы обычно имеют дело с величинами, которые мы привыкли называть… астрономическими! Эти величины так велики, что в нашем языке нет для них даже обозначений (масса Солнца, например, составляет 2×1030кг, иначе говоря, это двойка с 30 нулями; средняя плотность вещества и энергии во Вселенной — 9×10−27 кг/м3, т. е. девятке предшествуют 26 нулей). В астрономии число между 0,1 и 1 можно считать равным 1. Так что с точностью до порядка мы можем считать, что планетной системой обладает каждая звезда.

Если вы не возражали против моего предыдущего утверждения о том, что в нашей Солнечной системе нет ничего необычного, то это открытие тоже не должно вызвать у вас чувство протеста. Поражает лишь то, что, глядя в звездное небо, на все эти видимые невооруженным глазом 3000 звезд Млечного Пути, вы вполне можете ожидать, что у каждой из них есть своя планета. А у многих, возможно, есть и своя планетная система. Ни одна из них не будет точной копией нашей Солнечной системы, но если принимать во внимание планетные массы и физический состав, которые мы рассчитываем найти, то можно вполне рассчитывать на очень близкое сходство. Так что когда вы представляете себе 400 млрд звезд, которые, согласно нашим представлениям, составляют галактику Млечный Путь, вы вправе надеяться, что вас там ждут 400 млрд (или около того) планет.

«Это жизнь, Джим, но не такая, какой мы ее знаем»

Как будут выглядеть инопланетяне? Полагаю, ни для кого не секрет, что инопланетян в кино обычно представляют в виде гуманоидов по двум причинам: так дешевле, и людям более симпатичны антропоморфные инопланетяне. Из этого правила есть много исключений, но вопрос заключается в том, с чего следует начать поиск инопланетной жизни?

Хоть я и не исключаю, что в один прекрасный день какой-нибудь марсоход снимет замедленное видео, на котором крошечный марсианский слизняк будет ползти по пыльной марсианской равнине, но столь прямолинейные методы для наших целей не подходят. Явление, которое мы называем жизнью, — это набор взаимосвязанных химических процессов; переработка энергии, необходимой для поддержания жизни, приводит к выделению различных побочных продуктов (выдохните, и вы поймете, что я имею в виду). Следовательно, в наших поисках жизни имеет смысл учитывать, как присутствие живых организмов меняет состав окружающей среды. Проявление последствий биологических процессов называется биосигнатурой. Наилучшими или наиболее исчерпывающими можно считать те биосигнатуры, которые нельзя получить методами неорганической химии.

Что касается Земли, то присутствие в атмосфере кислорода, производимого растениями в процессе фотосинтеза, — очевидная биосигнатура. Наблюдатели из космоса, заметив, что атмосфера Земли на 20% состоит из кислорода, возможно, сделают осторожное допущение, что это — следствие какого-то неизвестного процесса небиологической природы. Однако они непременно заметят, что нашу планету отличает множество признаков, которые указывают на присутствие жизни. Мы явно можем рассчитывать на более пристальное внимание. Подобным же образом астрономы определяют биосигнатуры (в данном случае — атмосферный биомаркер).

Так что, возможно, с практической точки зрения имеет смысл сначала определить, что может служить признаком жизни. Но как быть с источником этих изменений — с живыми организмами? Ранее я утверждал, что, столкнувшись с вопросом, как нам организовать поиск жизни во Вселенной, следует начать с того, что мы знаем о жизни на Земле, и потом оценить, в каком направлении имело бы смысл распространить наши знания.

С этой точки зрения нам следует первым делом обратить внимание на земные организмы: одноклеточные бактерии и археи. Как ни посмотри, эти организмы распространены на Земле шире всего. Бактерии и археи, которые сегодня образуют наибольший объем живой материи (биомассы) на нашей планете, существовали непрерывно на протяжении 3,5 — 4 млрд лет (динозавры просуществовали 165 млн лет, а мы — пока что всего лишь 2 млн).

И тут важно не осложнять дело, особенно если вы работаете в лаборатории, которая занимается разработкой инструментов для дистанционного поиска жизни на отдаленных планетах и их спутниках. Допустим, вы поставите себе целью сконструировать инструмент, который сможет обнаружить биосигнатуру инопланетной жизни. Когда вы решите эту задачу (и соберете целую кучу научных премий), впору будет задуматься: как же на самом деле выглядит инопланетный слизняк и как устроен?

Контакт

Где будет открыта новая жизнь? Может, мы обнаружим признаки жизни в образце бактериальной слизи, взятом на Титане, спутнике Сатурна? Или, наблюдая какую-либо экзопланету, мы получим свидетельства присутствия в ее атмосфере биомаркера? А может, искусственная жизнь будет получена в пробирке? Или мы получим сообщение, посланное нам из глубин космоса какой-то разумной формой жизни? Что ж, возможно всякое. Однако перед ученым, располагающим лишь ограниченным набором инструментов, встает вопрос: куда направить свои поиски внеземной жизни? Другими словами, если у вас есть средства только на один космический аппарат, куда вы его пошлете?

Когда я задаю такие вопросы своим студентам, большинство из них выбирает бактериальную слизь или биомаркеры. Другие рассчитывают на жизнь из пробирки, а один или двое готовы терпеливо ждать у телефона. Такие ответы — результат полученных в процессе обучения естественно-научных знаний. Цель этого вопроса — заставить их задуматься о том, каким может быть точный сценарий контакта и как нам — в научном и в человеческом плане — на него реагировать.

А теперь переходим к самому интересному: когда мы обнаружим новую жизнь? Через 10 лет? Через 100? А может, через 1000? И снова ответ будет зависеть от точки зрения. Через 10 лет — это, вероятно, чересчур оптимистичный подход. Для этого требуется допустить, что жизнь широко распространена в тех местах, где мы ее ищем, и что у нас имеется рабочее оборудование, позволяющее сделать однозначный вывод о существовании жизни. Через 1000 лет — мне представляется довольно пессимистичным взглядом. В соответствии с ним открытие переносится в отдаленное будущее, почти не зависящее от наших сегодняшних усилий, из чего можно сделать вывод, что шансы добиться успеха в ближайшей перспективе равны нулю.

Ответ «через 100 лет» — гораздо более многообещающий. Это величина того же порядка, что и продолжительность человеческой жизни. За это время можно спроектировать и соорудить беспилотный космический аппарат для полета к Юпитеру или Сатурну, дождаться осуществления его миссии и осмыслить полученные результаты. За это время можно построить следующее поколение гигантских телескопов, которые позволят исследовать состав атмосферы далеких экзопланет (уже сейчас строятся телескопы с диаметром зеркала более 30 м). Через сотню лет эта цель вполне достижима, если мы сумеем выполнить несколько важных условий: первое — мы должны принимать только взвешенные решения, второе — нам необходимо проявлять настойчивость и, наконец, третье — нам должна сопутствовать удача (мы еще увидим, насколько велика ее роль в подобных делах).

Путешествие длиной в триллионы километров

После открытия множества новых планет, обращающихся вокруг далеких звезд, и начала широкомасштабного обследования планет Солнечной системы, в котором задействована целая армия космических зондов, мы оказались на пороге революции, которая сулит нам столь же волнующие открытия, как и начало применения телескопа в астрономии. Наши познания расширяются потрясающими темпами, однако в отсутствие каких-либо убедительных доказательств обнаружения жизни они остаются неполными.

Цель этой книги — убедительно показать, что современной астробиологии следует сконцентрироваться на пяти наиболее правдоподобных сценариях обнаружения внеземной жизни. Почему именно пяти, может последовать вопрос. Главным образом потому, что «правдоподобный» — это не совсем то же самое, что «вероятный». Если бы я старался убедить вас, что существует одно конкретное направление, одна планета или спутник, где мы с наибольшей вероятностью можем обнаружить жизнь, то это было бы скорее пиаром, чем наукой. С другой стороны, если бы я представил исчерпывающий список вариантов поиска внеземной жизни, то это шло бы вразрез с реальной жизнью, поскольку в действительности мы можем финансировать лишь небольшое число научных проектов.

Поэтому, сосредоточившись на пяти сценариях обнаружения жизни в космосе, мы сможем соблюсти баланс между этими двумя крайностями.

Тот факт, что сегодня мы способны рассуждать о том, какие типы живых организмов можно обнаружить в тех или иных местах во Вселенной, — свидетельство огромного прогресса, который произошел в астробиологии за последние 20 лет. Имеют ли под собой такие рассуждения какую-либо реальную основу или это просто научная фантастика? Чтобы ответить на эти вопросы, стоит напомнить, что в любом научном эксперименте заключена значительная доля предположений: если вы точно знаете, чего ожидать, то зачем проводить эксперименты? Предположения, изложенные в данной книге, практически ничем не отличаются от тех, которые выдвигает команда ученых, планирующих космическую экспедицию к другим планетам.

Команда НАСА, которая готовила высадку марсохода «Кьюриосити» на Марс в августе 2012 г., не знала, что именно они там найдут. Предыдущие миссии обнаружили множество косвенных признаков того, что геологическое строение поверхности планеты сформировалось под воздействием жидкой воды. «Кьюриосити» был снабжен набором инструментов, которые позволяли проводить дальнейшие расширение наших познаний о Марсе, накопленных ранее. В будущем новые, пока еще не запланированные экспедиции будут искать признаки органической жизни в заранее определенных местах, пригодных для ее обитания. Если миссия будет беспилотной, специалистам придется заранее задуматься над тем, какие формы жизни могут встретиться, чтобы запланировать эксперименты для их обнаружения. Если предположения окажутся обоснованными (и жизнь существует), то шансы на успех могут быть весьма значительны. Если же их рассуждения окажутся ошибочными или жизни не существует (или же им просто не повезет), то им грозит разочарование.

Мы исходим из того, что у нас имеется достаточно (по крайней мере, для пяти сценариев поиска жизни) научного опыта, позволяющего делать обоснованные предположения о том, какую именно жизнь у нас есть шанс обнаружить. При этом, конечно, остается значительная доля неопределенности, но это как раз самое интересное. Мы вольны в своих решениях, какими бы они ни оказались — правильными или ошибочными, обоснованными или непродуманными, но от них зависит, что нас ждет в будущем — успех или поражение. Лучше всего это сформулировали Филип Моррисон и Джузеппе Коккони, которые в 1959 г. призвали научное сообщество начать поиски внеземного разума: «Трудно оценить, какова вероятность успеха, но, если вообще не искать, то эта вероятность заведомо будет равной нулю».

Купить полную книгу

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

48 − 43 =

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: